1,224 research outputs found

    Modality-Specific Effects of Perceptual Load in Multimedia Processing

    Get PDF
    Digital media are sensory-rich, multimodal, and often highly interactive. An extensive collection of theories and models within the field of media psychology assume the multimodal nature of media stimuli, yet there is current ambiguity as to the independent contributions of visual and auditory content to message complexity and to resource availability in the human processing system. In this article, we argue that explicating the concepts of perceptual and cognitive load can create progress toward a deeper understanding of modality-specific effects in media processing. In addition, we report findings from an experiment showing that perceptual load leads to modality-specific reductions in resource availability, whereas cognitive load leads to a modality-general reduction in resource availability. We conclude with a brief discussion regarding the critical importance of separating modality-specific forms of load in an increasingly multisensory media environment

    Modality-Specific Effects of Perceptual Load in Multimedia Processing

    Get PDF
    Digital media are sensory-rich, multimodal, and often highly interactive. An extensive collection of theories and models within the field of media psychology assume the multimodal nature of media stimuli, yet there is current ambiguity as to the independent contributions of visual and auditory content to message complexity and to resource availability in the human processing system. In this article, we argue that explicating the concepts of perceptual and cognitive load can create progress toward a deeper understanding of modality-specific effects in media processing. In addition, we report findings from an experiment showing that perceptual load leads to modality-specific reductions in resource availability, whereas cognitive load leads to a modality-general reduction in resource availability. We conclude with a brief discussion regarding the critical importance of separating modality-specific forms of load in an increasingly multisensory media environment

    Forest Conservation: A Potential Nutrition-Sensitive Intervention in Low- and Middle-Income Countries

    Get PDF
    Rasolofoson, Ricketts, Jacob, Johnson, Pappinen and Fisher. Childhood undernutrition yearly kills 3.1 million children worldwide. For those who survive early life undernutrition, it can cause motor and cognitive development problems that translate into poor educational performance and limited work productivity later in life. It has been suggested that nutrition-specific interventions (e.g., micronutrient supplementation) that directly address the immediate determinants of undernutrition (e.g., nutrient intake) need to be complemented by nutrition-sensitive interventions that more broadly address the underlying determinants of undernutrition (e.g., food insecurity). Here, we argue that forest conservation represents a potentially important but overlooked nutrition-sensitive intervention. Forests can address a number of underlying determinants of undernutrition, including the supply of forest food products, income, habitat for pollinators, women\u27s time allocation, diarrheal disease, and dietary diversity. We examine the effects of forests on stunting—a debilitating outcome of undernutrition—using a database of household surveys and environmental variables across 25 low- and middle-income countries. Our result indicates that exposure to forest significantly reduces child stunting (at least 7.11% points average reduction). The average magnitude of the reduction is at least near the median of the impacts of other known nutrition interventions. Forest conservation interventions typically cover large areas and are often implemented where people are vulnerable, and thus could be used to reach a large number of the world\u27s undernourished communities that may have difficult access to traditional nutrition programs. Forest conservation is therefore a potentially effective nutrition-sensitive intervention. Efforts are needed to integrate specific nutrition goals and actions into forest conservation interventions in order to unleash their potential to deliver nutritional benefits

    Phased Array Feed Calibration, Beamforming and Imaging

    Full text link
    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20-Meter Telescope. Formed beams achieved an aperture efficiency of 69% and system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.Comment: 19 pages, 13 figure

    Pearling and Pinching: Propagation of Rayleigh Instabilities

    Full text link
    A new category of front propagation problems is proposed in which a spreading instability evolves through a singular configuration before saturating. We examine the nature of this front for the viscous Rayleigh instability of a column of one fluid immersed in another, using the marginal stability criterion to estimate the front velocity, front width, and the selected wavelength in terms of the surface tension and viscosity contrast. Experiments are suggested on systems that may display this phenomenon, including droplets elongated in extensional flows, capillary bridges, liquid crystal tethers, and viscoelastic fluids. The related problem of propagation in Rayleigh-like systems that do not fission is also considered.Comment: Revtex, 7 pages, 4 ps figs, PR

    Active colloids in complex fluids

    Get PDF
    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.Comment: 6 figure
    • …
    corecore